Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method.

نویسندگان

  • Denis H Y Leung
  • You-Gan Wang
  • Min Zhu
چکیده

The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the effective factors on Bipolar I Disorder frequent recurrence in a 5 years longitudinal study using generalized estimation equations method

Background and Purpose: Patients with Bipolar I Disorder recurrence experiences mood variation between manic and depression during the time. Hence, that is need to the longitudinal study on Bipolar Disorder patients. This study aims to evaluate the effective factors on Bipolar I Disorder frequent recurrence in 5 years longitudinal study using generalized estimation equations (GEE) m...

متن کامل

A Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response

In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...

متن کامل

An improved quadratic inference function for parameter estimation in the analysis of correlated data.

Generalized estimating equations (GEE) are commonly employed for the analysis of correlated data. However, the quadratic inference function (QIF) method is increasing in popularity because of its multiple theoretical advantages over GEE. We base our focus on the fact that the QIF method is more efficient than GEE when the working covariance structure for the data is misspecified. It has been sh...

متن کامل

‘semiparametric Gee Analysis in Partially Linear Single-index Models for Longitudinal Data’

In this article, we study a partially linear single-index model for longitudinal data under a general framework which includes both the sparse and dense longitudinal data cases. A semiparametric estimation method based on the combination of the local linear smoothing and generalized estimation equations (GEE) is introduced to estimate the two parameter vectors as well as the unknown link functi...

متن کامل

Comparison of generalized estimating equations and quadratic inference functions using data from the National Longitudinal Survey of Children and Youth (NLSCY) database

BACKGROUND The generalized estimating equations (GEE) technique is often used in longitudinal data modeling, where investigators are interested in population-averaged effects of covariates on responses of interest. GEE involves specifying a model relating covariates to outcomes and a plausible correlation structure between responses at different time periods. While GEE parameter estimates are c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biostatistics

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2009